407 research outputs found

    Bryozoan stable carbon and hydrogen isotopes: relationships between the isotopic composition of zooids, statoblasts and lake water

    Get PDF
    0000-0001-7279-715X© Springer International Publishing Switzerland 2015. The attached document is the authors' final accepted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Spatiotemporal patterns in methane flux and gas transfer velocity at low wind speeds: implications for upscaling studies on small lakes

    No full text
    Lakes contribute significantly to the global natural emissions of methane (CH4) and carbon dioxide. However, to accurately incorporate them into the continental carbon balance more detailed surveys of lacustrine greenhouse gas emissions are needed, especially in respect to spatiotemporal variability and to how this affects the upscaling of results. We investigated CH4 flux from a small, wind-shielded lake during 10 field trips over a 14 month period. We show that floating chambers may be used to calibrate the relationship between gas transfer velocity (k) and wind speed at 10 m height (U10) to the local system, in order to obtain more accurate estimates of diffusive CH4 flux than by applying general models predicting k based on U10. We confirm earlier studies indicating strong within-lake spatial variation in this relationship and in ebullitive CH4 flux within the lake basin. However, in contrast to the pattern reported in other studies, ebullitive CH4 flux was highest in the central parts of the lake. Our results indicate positive relationships between k and U10 at very low U10 (0–3 m s-1), which disagrees with earlier suggestions that this relationship may be negligible at low U10 values. We estimate annually averaged open water CH4 emission from Lake Gerzensee to be 3.6–5.8 mmol m-2 d-1. Our data suggest that estimates of greenhouse gas emissions from aquatic systems to the atmosphere based on the upscaling of short-term and small-scale measurements can be improved if both spatial and temporal variabilities of emissions are taken into account

    Stable isotopes in biological and chemical fossils from lake sediments: developing and calibrating palaeoenvironmental proxies

    Get PDF
    Stable isotope records of H, C, N, O, and Si derived from lake sediments provide valuable information about changing environmental conditions, with diverse applications in Quaternary research. A key issue with the interpretation of stable isotope data is understanding the hydrological, ecological, metabolic, and taphonomic processes that affect stable isotope values measured on individual taxa and specific compounds. In order to provide a better overview of these processes, we brought together specialists in stable isotope biogeochemistry working on lake sediment records during a workshop in Southampton in July 2016. Articles in this special issue provide an overview of the data presented during the workshop as well as the outcome of group discussions. The aim of this special issue is to improve the accuracy, robustness and reliability of interpretations of palaeolimnological stable isotope records, hence there is a focus on modern monitoring, calibration, and experimental studies to understand spatial and temporal variability and taphonomic processes. Studies that provide detailed comparisons with other proxies to constrain the interpretations of stable isotope data are also included

    Chironomid-based palaeotemperature estimates for northeast Finland during Oxygen Isotope Stage 3.

    Get PDF
    Quantitative palaeotemperature estimates for the earlier part of Oxygen Isotope Stage (OIS-) 3 are inferred from subfossil chironomid remains. The high-latitudinal study site of Sokli, northeast Finland, provides for a unique lacustrine deposit covering the earlier part of OIS-3, and the chironomid remains found in the sediments show that a shallow lake with a diverse fauna was present at the study site throughout the record. Using a Norwegian calibration data set as a modern analogue, mean July air temperatures are reconstructed. The chironomid-inferred July air temperatures are surprisingly high, reaching values similar to the current temperature at the study site. Other proxies that were applied to the sediments included the analysis of botanical and zoological macro-remains, and our results concur with temperature estimates derived from climate indicator taxa. Summer temperatures for interstadial conditions, reconstructed with climate models, are as high as our proxy-based palaeotemperatures

    Taxon-specific δ13C analysis of chitinous invertebrate remains in sediments from Strandsjön, Sweden

    Get PDF
    Taxon-specific stable carbon isotope (δ13C) analysis of chitinous remains of invertebrates can provide valuable information about the carbon sources used by invertebrates living in specific habitats of lake ecosystems (for example, sediments, water column, or aquatic vegetation). This is complementary to δ13C of sedimentary organic matter (SOM), which provides an integrated signal of organic matter produced in a lake and its catchment, and of diagenetic processes within sediments. In a sediment record from Strandsjön (Sweden) covering the past circa 140years, we analyzed SOM geochemistry (δ13C, C:Natomic, organic carbon content) and δ13C of chitinous invertebrate remains in order to examine whether taxon-specific δ13C records could be developed for different invertebrate groups and whether these analyses provide insights into past changes of organic carbon sources for lacustrine invertebrates available in benthic and planktonic compartments of the lake. Invertebrate taxa included benthic chironomids (Chironomus, Chironomini excluding Chironomus, Tanytarsini, and Tanypodinae), filter-feeders on suspended particulate organic matter (Daphnia, Plumatella and Cristatella mucedo), and Rhabdocoela. δ13C of chironomid remains indicated periodic availability of 13C-depleted carbon sources in the benthic environment of the lake as δ13C values of the different chironomid taxa fluctuated simultaneously between −34.7 and −30.5‰ (VPDB). Daphnia and Bryozoa showed parallel changes in their δ13C values which did not coincide with variations in δ13C of chironomids, though, and a 2-3‰ decrease since circa AD 1960. The decrease in δ13C of Daphnia and Bryozoa could indicate a decrease in phytoplankton δ13C as a result of lower lake productivity, which is in accordance with historical information about the lake that suggests a shift to less eutrophic conditions after AD 1960. In contrast, Rhabdocoela cocoons were characterized by relatively high δ13C values (−30.4 to −28.2‰) that did not show a strong temporal trend, which could be related to the predatory feeding mode and wide prey spectrum of this organism group. The taxon-specific δ13C analyses of invertebrate remains indicated that different carbon sources were available for the benthic chironomid larvae than for the filter-feeding Daphnia and bryozoans. Our results therefore demonstrate that taxon-specific analysis of δ13C of organic invertebrate remains can provide complementary information to measurements on bulk SOM and that δ13C of invertebrate remains may allow the reconstruction of past changes in carbon sources and their δ13C in different habitats of lake ecosystems

    The stable isotope composition of organic and inorganic fossils in lake sediment records: current understanding, challenges, and future directions

    Get PDF
    This paper provides an overview of stable isotope analysis (H, C, N, O, Si) of the macro and microscopic remains from aquatic organisms found in lake sediment records and their application in (palaeo)environmental science. Aquatic organisms, including diatoms, macrophytes, invertebrates, and fish, can produce sufficiently robust remains that preserve well as fossils and can be identified in lake sediment records. Stable isotope analyses of these remains can then provide valuable insights into habitat-specific biogeochemistry, feeding ecology, but also on climatic and hydrological changes in and around lakes. Since these analyses focus on the remains of known and identified organisms, they can provide more specific and detailed information on past ecosystem, food web and environmental changes affecting different compartments of lake ecosystems than analyses on bulk sedimentary organic matter or carbonate samples. We review applications of these types of analyses in palaeoclimatology, palaeohydrology, and palaeoecology. Interpretation of the environmental ‘signal’ provided by taxon-specific stable isotope analysis requires a thorough understanding of the ecology and phenology of the organism groups involved. Growth, metabolism, diet, feeding strategy, migration, taphonomy and several other processes can lead to isotope fractionation or otherwise influence the stable isotope signatures of the remains from aquatic organisms. This paper includes a review of the (modern) calibration, culturing and modeling studies used to quantify the extent to which these factors influence stable isotope values and provides an outlook for future research and methodological developments for the different examined fossil groups

    Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity

    Get PDF
    Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial- or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a meta-data analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric datasets overall consisting of 837 lakes. Our results indicate that in most of our datasets summer temperature (Tjul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing Tjul in regions with present day Tjul between 2.5-14 °C. In some areas with Tjul >14 °C chironomid diversity stabilises or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial-interglacial transition (~15,000-11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity-temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites

    Intraregional variability in chironomid-inferred temperature estimates and the influence of river inundations on lacustrine chironomid assemblages.

    Get PDF
    Floodplain lakes are rarely analysed for fossil chironomids and usually not incorporated in modern chironomid-climate calibration datasets because of the potential complex hydrological processes that could result from flooding of the lakes. In order to investigate this potential influence of river inundations on fossil chironomid assemblages, 13 regularly inundated lakes and 20 lakes isolated from riverine influence were sampled and their surface sediments analysed for subfossil chironomid assemblages. The physical and chemical settings of all lakes were similar, although the variation in the environmental variables was higher in the lakes isolated from riverine influence. Chironomid concentration and taxon richness show significant differences between the two classes of lakes, and the variation in these variables is best explained by loss-on-ignition of the sediments (LOI). Relative chironomid abundances show some differences between the two groups of lakes, with several chironomid taxa occurring preferentially in one of the two lake-types. The variability in chironomid assemblages is also best explained by LOI. Application of a chironomid-temperature inference model shows that both types of lakes reconstruct July air temperatures that are equal to, or slightly underestimating, the measured temperature of the region. We conclude that, although there are some differences between the chironomid assemblages of floodplain lakes and of isolated lakes, these differences do not have a major effect on chironomid-based temperature reconstruction. © 2007 Springer Science+Business Media B.V
    • …
    corecore